COMBINATORICA

Bolyai Society - Springer-Verlag

A BOUND FOR THE DIAMETER OF DISTANCE-REGULAR GRAPHS

L. PYBER

Received October 2, 1998

We prove that every distance-regular graph on n vertices has diameter at most $5 \log n$. This essentially settles a problem of Brouwer, Cohen and Neumaier.

0. Introduction

Let G be a connected graph on n vertices. For two vertices x, y of G we denote by d(x, y) the distance between x and y in G. We write $\Gamma_i(x)$ for the set of vertices y with d(x, y) = i. Instead of $\Gamma_1(x)$ we write $\Gamma(x)$.

For two vertices x,y at distance j we write $c_j(x,y) = |\Gamma_{j-1}(x) \cap \Gamma(y)|$, $a_j(x,y) = |\Gamma_j(x) \cap \Gamma(y)|$ and $b_j(x,y) = |\Gamma_{j+1}(x) \cap \Gamma(y)|$. G is said to be distance-regular if the numbers $c_j(x,y)$, $a_j(x,y)$ and $b_j(x,y)$ depend only on the distance j of x and y. In this case we denote these numbers simply by c_j , a_j and b_j .

Let d=d(G) be the diameter of G and $k=b_0$ the valency of G, then the array

is the intersection array of G. We will always assume that k > 2.

Various bounds for the diameter of distance-regular graphs are known (see [3] Chapter 5). For example Ivanov's theory [4], yields a bound on the diameter of distance-regular graphs with fixed valency and girth.

Mathematics Subject Classification (1991): 05E30, 05C12

Research supported by grants OTKA T016389 and AKP96/2-675.

550 L. PYBER

As a by-product of this theory Brouwer, Cohen and Neumaier prove that $n > d^2$ for $d \ge 20$ and k > 2 and ask for a bound for d which is logarithmic in n (see [3] p. 189 for a more precise formulation). Note that for d-cubes we have $n = 2^d$ hence in this case the diameter is exactly $\log n$ (throughout this paper \log denotes \log arithm to the base 2).

Our main result is the following.

Theorem. The diameter of a distance-regular graph G on n vertices is at most $5 \log n$.

The Theorem can be used to give a lower bound for the expansion of a distance-regular graph G and to obtain upper bounds for the order of its automorphism group (along the lines of [2] and [1]). These applications will be discussed elsewhere.

1. The Proof

Let us list a few well-known properties of intersection arrays (cf. [3]).

Proposition 1.1.

- (i) $k=b_0 > b_1 \ge b_2 \ge ... \ge b_{d-1} \ge 1$;
- (ii) $1 = c_1 \le c_2 \le \ldots \le c_d \le k$;
- (iii) $c_i \le b_j$ if $i+j \le d$.

Recently Koolen [5] obtained a useful new general restriction.

Lemma 1.2. Let $e \ge 2$ be an integer. Let G be a distance-regular graph such that $c_{e-1} < c_e$. Then

$$c_i + c_{e-i} \le c_e$$
 for all i $1 \le i \le e-1$.

Our main observation is that a "weak dual" of Koolen's lemma holds.

Lemma 1.3. Let e and i be integers such that $e > i \ge 1$. Let G be a distance-regular graph such that $b_{d-e} > b_{d-e+1}$. Then we have the following

- (i) If x, u, u', x' are vertices of G satisfying d(x, u) = i, d(u, u') = d e, d(u', x') = e i and d(x, x') = d then there exist a bijective map $\Phi : \Gamma(u) \cap \Gamma_{d-e+1}(u') \to \Gamma_{d-e+1}(u) \cap \Gamma(u')$ such that $d(v, \Phi(v)) \le d e + 1$;
- (ii) $b_{d-e} \ge c_{e-i} + c_i$.

Proof. Set $S = \Gamma(u) \cap \Gamma_{d-e+1}(u')$ and $S' = \Gamma_{d-e+1}(u) \cap \Gamma(u')$. Define the set P_s by $P_s = \{s' \in S' | d(s,s') \leq d-e+1\}$ for $s \in S$. We define $P_{s'}$ analogously for $s' \in S'$. Setting $B(s,u') = \Gamma_{d-e+2}(s) \cap \Gamma(u')$ we have $|B(s,u')| = b_{d-e+1}$.

Claim.

$$B(s, u') = S' \setminus P_s.$$

If $s' \in S' \setminus P_s$ then d(s,s') = d - e + 2 and $s' \in \Gamma(u')$ hence $s' \in B(s,u')$ as required.

If $b \in B(s, u')$ then $b \in \Gamma(u')$, $b \notin P_s$ hence we have to show that $b \in \Gamma_{d-e+1}(u)$. But d(s,b) = d-e+2 implies $d(u,b) \ge d-e+1$ and d(u',b) = 1 implies $d(u,b) \le d-e+1$.

This proves the claim.

By the above claim (and its analogue for s') we have $|P_s| = |P_{s'}| = b_{d-e} - b_{d-e+1}$. Let Δ be a bipartite graph with vertex set $S \cup S'$ such that (s, s') is an edge of B exactly if $d(s, s') \leq d - e + 1$. Then Δ is a regular bipartite graph and thus has a perfect matching. This proves (i).

Setting $C(x,u) = \Gamma_{i-1}(x) \cap \Gamma(u)$ and $C(x',u') = \Gamma_{e-i-1}(x') \cap \Gamma(u')$ we have $|C(x,u)| = c_i$ and $|C(x',u')| = c_{e-i}$.

We claim that $C(x,u) \subset S$. If $c \in C(x,u)$ then $c \in \Gamma(u)$ hence it suffices to show that d(c,u') = d - e + 1. But this follows from the inequalities $d(c,u') \le 1 + d(u,u') = d - e + 1$ and $(i-1) + d(c,u') + e - i \ge d$.

Similarly we have $C(x', u) \subset S'$.

Now C(x', u') and $\Phi(C(x, u))$ are disjoint for otherwise we would have

$$d = d(x, x') \le (i - 1) + (d - e + 1) + (e - i - 1)$$

which is impossible. Hence $c_i + c_{e-i} \le |S'| = b_{d-e}$ as required.

Note that for antipodal graphs 1.2 and 1.3 (ii) are essentially equivalent (see [3] 4.2.2).

We will also use a crucial result of Ivanov [4] (cf. [3] 5.9.6).

Lemma 1.4. Let G be a distance-regular graph and i > 1. Suppose the intersection array of G satisfies $(c_{i-1}, a_{i-1}, b_{i-1}) \neq (c_i, a_i, b_i) = \dots = (c_{i+j}, a_{i+j}, b_{i+j})$ then

- (i) $j+1 \le i$;
- (ii) if in addition $j+2 \le i$ then $b_j \ge 2c_{j+1}$.

Note that the conclusions of the lemma are valid if we assume $(c_1, a_1, b_1) \neq (c_i, a_i, b_i)$ instead of $(c_{i-1}, a_{i-1}, b_{i-1}) \neq (c_i, a_i, b_i)$.

In a distance-regular graph the numbers $|\Gamma_i(x)|$ do not depend on the choice of x hence we can denote $|\Gamma_i(x)|$ by k_i . We have $\frac{k_{i+1}}{k_i} = \frac{b_i}{c_{i+1}}$ and using Proposition 1.1 this immediately implies that $\frac{k_{i+1}}{k_i} \geq \frac{k_{i+2}}{k_{i+1}}$ for all i.

552 L. PYBER

Proposition 1.5. Let G be a distance-regular graph with valency k > 2 and diameter d > 2 and let ℓ denote the smallest index for which $\frac{k_{\ell+1}}{k_{\ell}} < 2$. Then

- (i) $\ell \leq \log k_{\ell}$;
- (ii) if the intersection array of G satisfies

$$(c_i, a_i, b_i) = \dots = (c_{i+j+1}, a_{i+j+1}, b_{i+j+1})$$

for some $j \ge 0$, then $j + 1 \le \ell$.

Proof. As noted above the ratios $\frac{k_{i+1}}{k_i}$ are monotone decreasing and therefore we have $k \cdot 2^{\ell-1} \le k_{\ell}$. This proves (i).

The hypothesis on the intersection array implies that $\frac{k_{i+1}}{k_i} = \frac{k_{i+2}}{k_{i+1}} = \dots = \frac{k_{i+j+1}}{k_{i+j}}$. By the choice of ℓ we have $\frac{k_\ell}{k_{\ell-1}} > \frac{k_{\ell+1}}{k_\ell}$ and if $i < \ell$ this implies $i+j+1 \le \ell$.

If $i \geq \ell$ then we have $\frac{b_i}{c_{i+1}} \leq \frac{b_\ell}{c_{\ell+1}} = \frac{k_{\ell+1}}{k_\ell} < 2$. If $(c_1,a_1,b_1) = (c_i,a_i,b_i)$ then $c_{i+1} = c_1 = 1$ implies that $b_i < 2$ and hence $b_1 = b_i = 1$. If $b_1 = c_1 = 1$ then G is a polygon [3, p. 188] which we have excluded. Using Lemma 1.4 (i) we obtain that $j+2 \leq i$ and using 1.4 (ii) that $\frac{k_{j+1}}{k_j} = \frac{b_j}{c_{j+1}} \geq 2$.

Therefore in both cases we have $i < \ell$ as required.

The proof of the Theorem

Let ℓ be as in Proposition 1.5. Consider the numbers c_x, b_x such that $2\ell + 2 \le x \le 3\ell + 2$. By Proposition 1.5 we either have $c_{x-1} < c_x$ or $b_{x-1} > b_x$ for some x.

In the first case using Koolen's lemma we obtain that $c_x \ge 2c_{\ell+1} > b_{\ell}$. By 1.1 (iii) this gives us $d < x + \ell \le 4\ell + 2$.

In the second case if $d \ge 5\ell + 3 \ge (x-1) + 2(\ell+1)$ then using Lemma 1.3 we obtain that $b_{\ell} \ge b_{x-1} \ge 2c_{\ell+1}$ a contradiction. Therefore in both cases we have $d \le 5\ell + 2$.

If $k_{\ell} \leq \frac{n}{2}$ then using 1.5 (i) we obtain that $d \leq 5\log n$. If $k_{\ell} > \frac{n}{2}$ then $\frac{b_{\ell}}{c_{\ell+1}} = \frac{k_{\ell+1}}{k_{\ell}} < 1$ and therefore by 1.1 (iii) we have $d \leq 2\ell \leq 2\log n$. The proof is complete.

References

[1] L. Babai: On the order of uniprimitive permutation groups, *Annals of Math.*, **113** (1981), 553–568.

- [2] L. Babai and M. Szegedy: Local expansion of symmetrical graphs, Combinatorics, Probability and Computing, 1 (1992), 1–11.
- [3] A. E. Brouwer, A. M. Cohen and A. Neumaier: *Distance-regular graphs*, Ergebnisse der Mathematik Vol 3.18, Springer-Verlag, Heidelberg, 1989.
- [4] A. A. Ivanov: Bounding the diameter of a distance-regular graph, Soviet Math. Dokl., 28 (1983), 149–152.
- [5] J. H. KOOLEN: On subgraphs of distance-regular graphs, J. Algebraic Combinatorics, 1 (1992), 353–362.

L. Pyber

Mathematical Institute of the Hungarian Academy of Sciences Budapest P.O.B. 127, H-1364 Hungary pyber@math-inst.hu